Molecular Packing Modes. Part VII. ${ }^{1}$ Crystal and Molecular Structures of Anhydrous Acetylenedicarboxylic Acid

By V. Benghiat, L. Leiserowitz,* and G. M. J. Schmidt, Department of Chemistry, Weizmann Institute of Science, Rehovot, Israel

Abstract

The crystal structure of anhydrous acetylenedicarboxylic acid has been solved from 1031 independent threedimensional counter data and refined by least-squares methods to $R 0 \cdot 045$. Crystals are monoclinic, space group $P 2_{1} / n, Z=4$, unit cell dimensions: $a=14.894, b=6.420, c=4.862 \AA, \beta=90.90^{\circ} . \sigma$ For bond lengths involving heavy atoms only is estimated as $0.002 \AA$. The molecule is non-planar: the dihedral angle between the carboxy-groups is 57.8°. The four $\mathrm{C}-\mathrm{O}$ bond lengths are nearly equal $(1.254 \pm 0.01 \AA)$. The mean $C-C$ bond length is $1.458 \pm 0.001 \AA$; the experimental value of the $-\mathrm{C} \equiv \mathrm{C}$ - bond is short ($1 \cdot 168 \AA$). The molecular dimensions and packing arrangement are discussed.

The structure analysis of anhydrous acetylenedicarboxylic acid (I) was undertaken as part of a study on the packing arrangement of carboxylic acids and on the electron-density distribution in the carbon-carbon triple bond. ${ }^{2}$ Acetylenedicarboxylic acid was chosen as a compound not containing a $\mathrm{C}-\mathrm{H}$ group, in which the triple bond provides very similar intramolecular environments for each of the oxygen atoms. In the present paper we discuss the molecular packing arrangement; the bonding electron density has been analysed elsewhere together with similar data on other acetylenic derivatives. ${ }^{2}$

EXPERIMENTAL

Crystals of the anhydrous, m.p. $175^{\circ} \mathrm{C}$ (decomp.), form were grown from nitromethane solution by slow evaporation in vacuo. The monoclinic crystals show the $\{111\},\{100\}$, $\{101\}$, and $\{010\}$ forms. They are extremely hygroscopic; crystal specimens for intensity measurements were enclosed in Lindemann glass capillaries. The cell parameters were computed by a least-squares method from 33 highangle reflections ($20>125^{\circ}$) measured on a G.E. goniostat ($\mathrm{Cu}-K_{\alpha}$ radiation).
Crystal Data.- $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4} \quad M=114 \cdot 1$. Monoclinic, $a=$ $14.894(1), \quad b=6.420(1), \quad c=4.862(1) \AA, \quad \beta=90.90(1)^{\circ}$, $U=465 \cdot 1 \AA^{3}, Z=4, D_{\mathrm{c}}=1 \cdot 63, F(000)=232$. Space group $P 2_{1} / n$ from systematic absences: $h 0 l$ for $h+l$ odd, $0 k 0$ for k odd. $\mathrm{Cu}-K_{\alpha}$ radiation $\lambda=1.5405 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)$ $=13.7 \mathrm{~cm}^{-1}$.

From a crystal mounted along $c^{*}, 1031$ independent threedimensional data including 112 unobserved reflections were collected by the stationary-crystal-stationary-counter method [10 s per reflection, 10 s per background with ω offset by $\left.l^{\circ}\right]$ with nickel-filtered $\mathrm{Cu}-K_{\alpha}$ radiation. The $I(h k l)$ and $I(h \bar{k} l)$ were measured and averaged. Treatment of the data and the weighting scheme have been described previously. ${ }^{3}$ Absorption corrections were not applied.

Structure Determination.-A first structure model was based on the two outstanding strong reflections (020) and (111), and a planar model of the molecule, the dimensions of which were taken from the structure of acetylenedicarboxylic acid dihydrate; ${ }^{4}$ according to the cell constants the
${ }^{1}$ Part VI, V. Benghiat and L. Leiserowitz, preceding paper.
${ }^{2}$ H. Irngartinger, L. Leiserowitz, and G. M. J. Schmidt, J. Chem. Soc. (B), 1970, 497.
hydrogen-bonded acid unit of length $16 \AA$ should lie along $a-c$ (parallel to the intersection of the above strong reflections) and lie with the centres of the hydrogen-bonded dimers across centres of symmetry. This model could not be refined. Instead it followed from the two sharpened Patterson function projections $p^{s}(x, z)$ and $p^{s}(x, y)$, computed with coefficients $F^{2}(h k l) / f^{2}$, that the molecule was not planar and lay in general positions; the y parameters were determined from a three-dimensional sharpened Patterson map. The molecular model so derived was refined by fullmatrix least-squares with isotropic temperature parameters for the carbon and oxygen atoms to $R 0.16$ and $R^{\prime} 0.08$. $\left[R^{\prime}=\Sigma w\left(k^{2} F_{0}^{2}-\left|F_{\mathrm{c}}\right|^{2}\right)^{2} / \Sigma w k^{4} F_{0}^{4}\right]$ for all reflections. The resulting structure consisted of a nearly collinear carbon chain with carboxy-groups making an angle of $c a .58^{\circ}$ with each other, and being intermolecularly hydrogen-bonded in a pseudocentrosymmetric manner.

Figure 1 Electron-density difference-Fourier synthesis in the plane of the carboxylic acid dimer of acetylenedicarboxylic acid. Interatomic distances (\AA) in the dimer are shown. Only positive regions are contoured, the first contour being at $0.1 \mathrm{e}^{-3}$, with intervals of $0.05 \mathrm{e}^{-3}$

Although the $\mathrm{C}-\mathrm{O}$ bond lengths were nearly all equal (1.262, $1.259,1.268$, and $1.266 \AA$) hydrogen atoms were now attached to the oxygen atoms of the ' longer' $\mathrm{C}-\mathrm{O}$ bonds (1.262 and $1-268$) at a distance of $1 \AA$. The isotropic refinement of these hydrogen atoms and further anisotropic refinement of the other atoms led to a steep increase in $U_{\mathbf{H}}$. Next, the two hydrogen atoms were replaced by four ' half-electrons ' (labelled $\frac{1}{2} \mathrm{H}$) $1 \AA$ from each oxygen along the intermolecular $\mathrm{O} \cdots \mathrm{O}$ vectors. Further refinement led to reasonable values of $U\left(\frac{1}{2} \mathrm{H}\right)\left(0.04-0.065 \AA^{2}\right)$ and $0-\frac{1}{2} \mathrm{H}$ distances ranging from $0.81-0.95 \AA$. The final agreement factors for all reflections are $R^{\prime} 0.012$ and $R=$
${ }^{3}$ S. E. Filippakis, L. Leiserowitz, and G. M. J. Schmidt, J. Chem. Soc. (B), 1967, 290.
${ }_{4}$ J. D. Dunitz and J. M. Robertson, J. Chem. Soc., 1947, 148.
$0 \cdot 046$. A difference-Fourier synthesis, based on all but the ' half-hydrogen' atoms, and computed in the plane of the carboxy-dimer (Figure 1) showed a disordered electrondensity distribution of the hydrogens.
The scattering factor curves used for carbon and oxygen were taken from ref. 5 and for hydrogen from ref. 6. Observed and calculated structure factors of the final cycle are listed in Supplementary Publication No. SUP 20327 (2 pp., 1 microfiche).*

RESULTS AND DISCUSSION

Table 1 lists the experimental positional and thermal parameters and their estimated standard deviations.
Molecular Dimensions.-The angle between the best

Table 1

Atomic co-ordinates (fractional) and thermal parameters, with standard deviations in parentheses, referred to axes a, b, c

planes of the carboxy-groups of acetylenedicarboxylic acid is 57.8°, unlike the crystalline dihydrate in which the molecule is planar. The deviations from the best planes through two carboxy-groups, and the hydrogenbonded cyclic dimer are listed in Table 2.

The observed bond lengths and bond angles are shown in Figure 2. σ Values for the bond lengths involving heavy atoms only and ' half-hydrogens' are 0.002 and $0.06 \AA$ respectively, a value in accord with the differences between chemically equivalent bond lengths; σ for bond angles not involving hydrogen $0 \cdot 2^{\circ}$.

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970 , Issue No. 20 (items less than 10 pp . are sent as full size copies).

The length of the $\mathrm{C} \equiv \mathrm{C}$ bond ($1 \cdot 168 \AA$) is $0.04 \AA$ shorter than the commonly accepted value of $1 \cdot 206 \AA{ }^{7}$ Elec-tron-density difference-Fourier sections containing the

Table 2
Equations of planes in the form $A x+B y+C z+D=0$ where x, y, z are fractional atomic co-ordinates; distances ($10^{3} \AA$) of relevant atoms from the planes, are in square brackets
Plane (I) :
$\mathrm{O}(1), \mathrm{O}(2), \quad 2 \cdot 9953 x+5 \cdot 6651 y+2 \cdot 0534 z-2 \cdot 0176=0$ $\mathrm{C}(1), \mathrm{C}(2)$
$\left[\mathrm{O}(1) 2, \mathrm{O}(2) 2, \mathrm{C}(2)-5, \mathrm{C}(1) 2, \mathrm{C}\left(1^{\prime}\right)-19, \mathrm{C}\left(2^{\prime}\right)-27, \mathrm{O}\left(2^{\prime}\right)\right.$ $\left.-977, \mathrm{O}\left(1^{\prime}\right) 906, \frac{1}{2} \mathrm{H}(1) 70, \frac{1}{2} \mathrm{H}(2) 73\right]$
Plane (II):
$\mathrm{O}\left(1^{\prime}\right), \mathrm{O}\left(2^{\prime}\right), \quad-1 \cdot 0385 x+5.5609 y-2 \cdot 4012 z-0.8616=0$ $\mathrm{C}\left(1^{\prime}\right), \mathrm{C}\left(2^{\prime}\right)$
$\left[\mathrm{O}(1) 799, \mathrm{O}(2)-1078, \mathrm{C}(2)-102, \mathrm{C}(1)-34, \mathrm{C}\left(1^{\prime}\right) 0, \mathrm{C}\left(2^{\prime}\right) 0\right.$, $\left.\mathrm{O}\left(2^{\prime}\right) 0, \mathrm{O}\left(1^{\prime}\right) 0, \frac{1}{2} \mathrm{H}\left(1^{\prime}\right) 185, \frac{1}{2} \mathrm{H}\left(2^{\prime}\right) 70\right]$

```
Plane (III):
    \(\mathrm{O}(1), \mathrm{O}(2), \quad-1 \cdot 9576 x+5 \cdot 6266 y-2 \cdot 2431 z-0 \cdot 7668=0\)
        \(\mathrm{C}(1), \mathrm{C}(2)\),
        \(\mathrm{O}\left(1^{\prime}\right), \mathrm{O}\left(2^{\prime}\right)\),
        \(\mathrm{C}\left(1^{\prime}\right), \mathrm{C}\left(2^{\prime}\right)^{*}\)
    \(\left[\mathrm{O}(1)-37, \mathrm{O}(2)-71, \mathrm{C}(2)-3, \mathrm{C}(1) 104, \mathrm{C}\left(1^{\prime}\right) 96, \mathrm{C}\left(2^{\prime}\right)-4\right.\),
        \(\left.\mathrm{O}\left(2^{\prime}\right)-58, \mathrm{O}\left(1^{\prime}\right)-29\right]\)
                            * Hydrogen-bonded carboxy-dimer.
```

carbon chain $\mathrm{C} \cdot \mathrm{C}: \mathrm{C} \cdot \mathrm{C}$ (see Figure 10 of ref. 2) show excess of density between the single-bonded carbon atoms, and a trough in the centre of the $\mathrm{C} \equiv \mathrm{C}$ bond. The 'shortening' of the triple bond and the (apparent)

Figure 2 (a) Bond lengths (\AA) and (b) bond angles (${ }^{\circ}$)
electron deficiency in the centre of the bond are almost certainly artefacts, for they have been correlated with the neglect of the triple-bond charge density in the leastsquares refinement. ${ }^{2}$ Indeed, an assumed value of $1.206 \AA$ would also bring the adjoining single bond from 1.458 to $1.439 \AA$, and thus in line with the bond lengths,

[^0]determined by microwave analysis, in propynal ${ }^{8}$ ($\mathrm{C}=\mathrm{C}$ 1.215 , and C-C $1.444 \AA$).

The $\mathrm{C}-\mathrm{O}$ bonds are almost equal in length, a result compatible with the refined parameters of the four ' half-electrons ' attached to the oxygen atoms $\left[0-\frac{1}{2} \mathrm{H}\right.$: $0.95,0.81,0.85,0.86 \AA ; U^{2}\left(\frac{1}{2} \mathrm{H}\right): 0.065,0.041,0.065$, $0.049 \AA^{2}$. However, there appear to be small and

Table 3
Interatomic distances (\AA)

$A(000) * A(000)$		$\mathrm{C}(2) \cdot$	$\mathrm{O}\left(2^{\prime}\right)$	3.440
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	$2 \cdot 236$	$\mathrm{C}(2) \cdots$	$\mathrm{O}\left(1^{\prime}\right)$	$3 \cdot 401$
$\mathrm{O}(1) \cdots \mathrm{C}(1)$	$2 \cdot 320$	C(2) \cdots	H($\mathbf{1}^{\prime}$)	$2 \cdot 588$
$\mathrm{O}(1) \cdots \mathrm{C}\left(1^{\prime}\right)$	3.397	$\mathrm{C}(2)$.	$\mathrm{H}\left(2^{\prime}\right)$	$2 \cdot 624$
$\mathrm{O}(2) \cdots \mathrm{C}(1)$	2.307			
$\mathrm{C}(1) \cdots \mathrm{O}\left(2^{\prime}\right)$	$3 \cdot 400$	$A(000)$	A(011)	
$\mathrm{C}(1) \cdots \mathrm{O}\left(\mathrm{l}^{\prime}\right)$	3-367	$\mathrm{O}(1) \cdots$	$\mathrm{O}\left(\mathrm{l}^{\prime}\right)$	3.250
$\mathrm{C}\left(1^{\prime}\right) \cdots \mathrm{O}\left(2^{\prime}\right)$	$2 \cdot 319$	$\mathrm{O}(2)$.	C(2')	$3 \cdot 870$
$\mathrm{C}\left(\mathbf{1}^{\prime}\right) \cdots \mathrm{O}\left(\mathrm{l}^{\prime}\right)$	$2 \cdot 310$	$\mathrm{O}(2) \cdots$	O(1)	3.378
$\mathrm{O}\left(2^{\prime}\right) \cdots \mathrm{O}\left(1^{\prime}\right)$	$2 \cdot 237$	C(2) \cdots	$\mathrm{O}\left(\mathrm{I}^{\prime}\right)$	3.420
O) $\bar{A}(001)$		$\mathrm{O}\left(1^{\prime}\right)$	- $\mathrm{H}(1)$	$\stackrel{2.848}{3.037}$
$\stackrel{A}{A}(000) \quad A(001)$		$\mathrm{O}\left(\mathrm{I}^{\prime}\right)$	- $\mathrm{H}(2)$	3.037
$\mathrm{O}(2) \cdots \mathrm{O}\left(2^{\prime}\right)$	3.282			
$\mathrm{O}(2) \cdots \mathrm{O}\left(1^{\prime}\right)$	$3 \cdot 522$	$A(000)$	$A(001)$	
$\mathrm{C}\left(2^{\prime}\right) \cdots \mathrm{H}(2)$	$3 \cdot 153$	$\mathrm{O}\left(1^{\prime}\right)$	- $\mathrm{H}\left(2^{\prime}\right)$	3.010
$\mathrm{O}\left(2^{\prime}\right) \cdots \cdot \mathrm{H}(2)$	3.180			
$\mathrm{O}\left(1^{\prime}\right) \cdots \cdot \mathrm{H}(2)$	$3 \cdot 459$	$A(000)$	$\bar{B}(010)$	
		$\mathrm{C}\left(2^{\prime}\right)$	$\mathrm{O}\left(\mathrm{l}^{\prime}\right)$	3.574
$A(000) \quad B(000)$		$\mathrm{C}\left(2^{\prime}\right)$	H(1)	$3 \cdot 191$
$\mathrm{O}\left(1^{\prime}\right) \cdots \cdot \mathrm{H}(1)$	3•120	$\mathrm{O}\left(2^{\prime}\right) \cdot$	- O(1)	$3 \cdot 357$
		$\mathrm{O}\left(2^{\prime}\right)$	- H(1)	$3 \cdot 150$
$A(000) \quad A(010)$				
$\mathrm{O}(1) \cdots \mathrm{C}\left(2^{\prime}\right)$	3-109	$A(000)$	$A(00 \mathrm{I})$	
$\mathrm{O}(1) \cdots \mathrm{O}\left(2^{\prime}\right)$	$3 \cdot 249$	$\mathrm{O}(1) \cdots$	$\mathrm{O}(2)$	3.240
$\mathrm{O}(1) \cdots \mathrm{O}\left(1^{\prime}\right)$	$3 \cdot 229$	$\mathrm{O}(1) \cdots$	H(2)	$2 \cdot 891$
$\mathrm{O}(1) \cdots \cdot \mathrm{H}\left(1^{\prime}\right)$	3.119	$\mathrm{O}\left(2^{\prime}\right)$	O(1)	3.299
$\mathrm{O}(1) \cdots \mathrm{H}\left(2^{\prime}\right)$	$3 \cdot 247$			
		$A(000)$	$B(00 \mathrm{I})$	
$A(000) \quad \bar{B}(000)$		$\mathrm{C}\left(2^{\prime}\right)$	$\mathrm{H}(1)$	2.499
$\mathrm{O}\left(1^{\prime}\right) \cdots \mathrm{O}\left(1^{\prime}\right)$	$3 \cdot 509$	$\mathrm{C}\left(2^{\prime}\right)$.	H(2)	2.667
$\mathrm{O}\left(\mathrm{l}^{\prime}\right) \cdots \cdot \mathrm{H}\left(\mathrm{l}^{\prime}\right)$	$3 \cdot 331$	$\mathrm{O}\left(2^{\prime}\right)$	- $\mathrm{H}(1)$	1.778
$\mathrm{O}\left(1^{\prime}\right) \cdots \mathrm{H}\left(2^{\prime}\right)$	$3 \cdot 070$	$\mathrm{O}\left(2^{\prime}\right)$	- $\mathrm{H}(2)$	2.893
		$\mathrm{O}\left(1^{\prime}\right)$.	- H(1)	2.673
$A(000) \quad B(\overline{101})$		$\mathrm{O}\left(1^{\prime}\right) \cdot$	- $\mathrm{H}(2)$	1.868
$\mathrm{O}(1) \cdots \mathrm{O}\left(1^{\prime}\right)$	3.089			
$\mathrm{O}(1) \cdots \mathrm{H}\left(1^{\prime}\right)$	3.051	$A(000)$	$A(000)$	
		$\mathrm{O}(1) \cdots$	$\mathrm{O}\left(2^{\prime}\right)$	$3 \cdot 219$
$A(000) \quad B(\overline{\mathrm{I}} 00)$		$\mathrm{O}(2) \cdots$	$\mathrm{O}\left(2^{\prime}\right)$	$3 \cdot 320$
$\mathrm{O}(1) \cdots \mathrm{C}\left(2^{\prime}\right)$	$3 \cdot 423$	$\mathrm{O}(1) \cdots$	H(2')	3.334
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	$2 \cdot 686$	$\mathrm{O}(2) \cdots$	H(2')	3.386
$\mathrm{O}(1) \cdots \mathrm{O}(1)$	$3 \cdot 457$	$\mathrm{C}(2) \cdots$	$\mathrm{O}\left(2^{\prime}\right)$	3.053
$\mathrm{O}(1) \cdots \mathrm{H}\left(1^{\prime}\right)$	2.801	$\mathrm{C}(2)$.	H(2)	3.263
$\mathrm{O}(1) \cdots \mathrm{H}\left(2^{\prime}\right)$	1.833	C(1) \cdots	$\mathrm{O}\left(2^{\prime}\right)$	3.394
$\mathrm{O}(2) \cdots \mathrm{C}\left(2^{\prime}\right)$	$3 \cdot 424$			
$\mathrm{O}(2) \cdots \mathrm{O}\left(\mathbf{2}^{\prime}\right)$	$3 \cdot 505$	$A(000)$	$A(001)$	
$\mathrm{O}(2) \cdots \mathrm{O}\left(1^{\prime}\right)$	2.651	$\mathrm{O}(2) \cdots$	$\mathrm{C}\left(1^{\prime}\right)$	3.249
$\mathrm{O}(2) \cdots \mathrm{H}\left(1^{\prime}\right)$	1.821	$\mathrm{O}(2) \cdots$	$\mathrm{C}\left(2^{\prime}\right)$	3.095
$\mathrm{O}(2) \cdots \mathrm{H}\left(2^{\prime}\right)$	2.859			
* Co-ordinates of equivalent positions:				
$A$$A$ $\begin{aligned} & x, y, z \\ & \bar{x}, \bar{y}, \bar{z}\end{aligned}$				

$A_{p q r}$ Denotes fractional co-ordinates $p+x, q+y, r+z$.
consistent differences in the molecular parameters of the hydrogen-bonded pair. Firstly, the bonds $\mathrm{C}(2)-\mathrm{O}(2)$ and $\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$, which are related to each other by the pseudo-inversion centre of the cyclic dimer, are equal in length to within $0.001 \AA$, and are $0.015 \AA$ longer than the $\mathrm{C}(2)-\mathrm{O}(1)$ and $\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$ bonds which themselves match to within $0.002 \AA$ from their mean. Secondly, the two
${ }^{8}$ C. C. Costain and J. R. Morton, J. Chem. Phys., 1959, 31, 389.
'half-hydrogens' $\left[\frac{1}{2} \mathrm{H}(2)\right.$ and $\left.\frac{1}{2} \mathrm{H}\left(2^{\prime}\right)\right]$ attached to the ' longer ' $\mathrm{C}-\mathrm{O}$ bonds have the lower temperature factors ($0.041,0.049<0.065,0.065 \AA^{2}$) which is consistent with their somewhat higher electron-density peaks of the $\delta(x, y, z)$ synthesis (Figure 1).

Packing.-The structure consists of hydrogen-bonded chains lying parallel to the [101] n glide direction

$$
1 \quad 1
$$

11
$012 \AA$
Figure 3 Packing arrangement seen along [001]

(a)

$012 \AA$
Figure 4 Packing arrangement of molecular dimers related by (a) the c translation, and (b) centre of inversion, seen normal to the plane of the shaded carboxylic acid dimer. The general positions of molecules a, \bar{a}, b, and c are x, y, z; $\frac{1}{2}-x, \frac{1}{2}+y,-\frac{1}{2}+z ; x, y,-1+z ;$ and $-x,-y,-z$
(Figures 3 and 4). The carboxylic acid pairs (II) which are formed via the n glide symmetry operation, are nearly coplanar (Table 2) since, first, the molecular chain ($\mathrm{C} \cdot \mathrm{C}: \mathrm{C} \cdot \mathrm{C}$) is almost parallel to [$10 \overline{1}]$ at height $y=\frac{1}{4}(n$ glide plane at $y=\frac{1}{4}$), and, secondly, the planes of the attached carboxy-groups make angles with the glide plane which are approximately equal in magnitude and opposite in sign ($+28 \cdot 1,-35 \cdot 9^{\circ}$). The dihedral angle between the best planes of the carboxy-groups in the dimer is $8 \cdot 6^{\circ}$.

The 'half-hydrogens' and the approximately equal $\mathrm{C}-\mathrm{O}$ bond lengths suggest either considerable proton tautomerism within the cyclic dimer, or orientional disorder whereby the carboxy-dimer exists in either of the two equivalent orientations (III) and (IV). The mean $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ distance is $2 \cdot 668 \AA$, which is $0.01 \AA$ longer
than the unsymmetric $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (carbonyl) hydrogen bond of the β-form of tetrolic acid. ${ }^{1}$ This result seems

(III)

then to be incompatible with the existence of a symmetric $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ hydrogen bond in acetylenedicarboxylic acid, and so we adopt the view that the carboxydimer is orientationally disordered in the crystal lattice.

We thank the National Bureau of Standards, Washington, for financial support of this work.
[1/1290 Received, 26th July, 1971]

[^0]: ${ }^{5}$ J. Berghuis, IJ. M. Haanappel, M. Potters, B. O. Loopstra, C. H. MacGillavry, and A. L. Veenendaal, Acta Cryst., 1955, 8, 478.
 ${ }_{6}$ R. McWeeny, Acta Cryst., 1951, 4, 513.
 7 Chem. Soc. Special Publ., No. 11, 1958.

